- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 27 (2020), pp. 1485-1504.
Published online: 2020-03
Cited by
- BibTex
- RIS
- TXT
High-energy X-ray radiography is a measuring technique for quantitative measurement and diagnosis of the object and its internal structure. Tomographic reconstruction determines the geometric and physical properties of the object according to the energy distribution on the imaging plane. Considering the noise and blur in the process of radiographing, we construct a general reconstruction model for the axisymmetric single image photographic system. This inverse problem is then cast within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown nonnegative density profile, the precision matrix, and two scale parameters. This results in a joint posterior distribution, which can be readily sampled using the Markov chain Monte Carlo (MCMC) method. To study the role of hyperparameters and their sensitivity analysis, a wide variety of tests were conducted which led to a number of definitive conclusions. Results of the density reconstructions and pointwise uncertainty estimates are presented for simulated signals with various physical factors in the imaging process included.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2019-0060}, url = {http://global-sci.org/intro/article_detail/cicp/15766.html} }High-energy X-ray radiography is a measuring technique for quantitative measurement and diagnosis of the object and its internal structure. Tomographic reconstruction determines the geometric and physical properties of the object according to the energy distribution on the imaging plane. Considering the noise and blur in the process of radiographing, we construct a general reconstruction model for the axisymmetric single image photographic system. This inverse problem is then cast within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown nonnegative density profile, the precision matrix, and two scale parameters. This results in a joint posterior distribution, which can be readily sampled using the Markov chain Monte Carlo (MCMC) method. To study the role of hyperparameters and their sensitivity analysis, a wide variety of tests were conducted which led to a number of definitive conclusions. Results of the density reconstructions and pointwise uncertainty estimates are presented for simulated signals with various physical factors in the imaging process included.