- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 27 (2020), pp. 753-774.
Published online: 2020-02
Cited by
- BibTex
- RIS
- TXT
In this work, we study a distributed optimal control problem, in which the governing system is given by second-order elliptic equations with log-normal coefficients. To lessen the curse of dimensionality that originates from the representation of stochastic coefficients, the Monte Carlo finite element method is adopted for numerical discretization where a large number of sampled constraints are involved. For the solution of such a large-scale optimization problem, stochastic gradient descent method is widely used but has slow convergence asymptotically due to its inherent variance. To remedy this problem, we adopt an averaged stochastic gradient descent method which performs stably even with the use of relatively large step sizes and small batch sizes. Numerical experiments are carried out to validate our theoretical findings.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0295}, url = {http://global-sci.org/intro/article_detail/cicp/13928.html} }In this work, we study a distributed optimal control problem, in which the governing system is given by second-order elliptic equations with log-normal coefficients. To lessen the curse of dimensionality that originates from the representation of stochastic coefficients, the Monte Carlo finite element method is adopted for numerical discretization where a large number of sampled constraints are involved. For the solution of such a large-scale optimization problem, stochastic gradient descent method is widely used but has slow convergence asymptotically due to its inherent variance. To remedy this problem, we adopt an averaged stochastic gradient descent method which performs stably even with the use of relatively large step sizes and small batch sizes. Numerical experiments are carried out to validate our theoretical findings.