- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 27 (2020), pp. 828-860.
Published online: 2020-02
Cited by
- BibTex
- RIS
- TXT
Many partial differential equations can be written as a multi-symplectic Hamiltonian system, which has three local conservation laws, namely multi-symplectic conservation law, local energy conservation law and local momentum conservation law. In this paper, we systematically give a unified framework to construct the local structure-preserving algorithms for general conservative partial differential equations starting from the multi-symplectic formulation and using the concatenating method. We construct four multi-symplectic algorithms, two local energy-preserving algorithms and two local momentum-preserving algorithms, which are independent of the boundary conditions and can be used to integrate any partial differential equations written in multi-symplectic Hamiltonian form. Among these algorithms, some have been discussed and widely used before while most are novel schemes. These algorithms are illustrated by the nonlinear Schrödinger equation and the Klein-Gordon-Schrödinger equation. Numerical experiments are conducted to show the good performance of the proposed methods.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0160}, url = {http://global-sci.org/intro/article_detail/cicp/13923.html} }Many partial differential equations can be written as a multi-symplectic Hamiltonian system, which has three local conservation laws, namely multi-symplectic conservation law, local energy conservation law and local momentum conservation law. In this paper, we systematically give a unified framework to construct the local structure-preserving algorithms for general conservative partial differential equations starting from the multi-symplectic formulation and using the concatenating method. We construct four multi-symplectic algorithms, two local energy-preserving algorithms and two local momentum-preserving algorithms, which are independent of the boundary conditions and can be used to integrate any partial differential equations written in multi-symplectic Hamiltonian form. Among these algorithms, some have been discussed and widely used before while most are novel schemes. These algorithms are illustrated by the nonlinear Schrödinger equation and the Klein-Gordon-Schrödinger equation. Numerical experiments are conducted to show the good performance of the proposed methods.