- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 27 (2020), pp. 861-896.
Published online: 2020-02
Cited by
- BibTex
- RIS
- TXT
We propose an approximate solver for compressible fluid-elastoplastic solid Riemann problems. The fluid and hydrostatic components of the solid are described by a family of general Mie-Grüneisen equations of state, and the hypo-elastoplastic constitutive law we studied includes the perfect plasticity and linearly hardened plasticity. The approximate solver provides the interface stress and normal velocity by an iterative method. The well-posedness and convergence of our solver are verified with mild assumptions on the equations of state. The proposed solver is applied in computing the numerical flux at the phase interface for our compressible multi-medium flow simulation on Eulerian girds. Several numerical examples, including Riemann problems, underground explosion and high speed impact applications, are presented to validate the approximate solver.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0250}, url = {http://global-sci.org/intro/article_detail/cicp/13922.html} }We propose an approximate solver for compressible fluid-elastoplastic solid Riemann problems. The fluid and hydrostatic components of the solid are described by a family of general Mie-Grüneisen equations of state, and the hypo-elastoplastic constitutive law we studied includes the perfect plasticity and linearly hardened plasticity. The approximate solver provides the interface stress and normal velocity by an iterative method. The well-posedness and convergence of our solver are verified with mild assumptions on the equations of state. The proposed solver is applied in computing the numerical flux at the phase interface for our compressible multi-medium flow simulation on Eulerian girds. Several numerical examples, including Riemann problems, underground explosion and high speed impact applications, are presented to validate the approximate solver.