- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 27 (2020), pp. 503-512.
Published online: 2019-12
Cited by
- BibTex
- RIS
- TXT
A variety of numerical simulations based on continuum medium models have been carried out in unsteady flows to explore the physical characteristics qualitatively. However, there still lack quantitative valid scales for these models, in which scale the solutions by simulation can be treated as physically credible. In this work, Euler and Navier-Stokes models are implemented on the typical unsteady flow with discontinuities: Sod shock tube problem. Firstly, based on the Boltzmann model whose valid scale is molecule kinetic scale, we compare the values of different moments of Euler and Navier-Stokes to Boltzmann with the evolution of flow. The results provide the valid scales of Euler and Navier-Stokes models quantitatively. Secondly, following the real conditions and parameters in real air, the physical characteristics of waves’ generation and evolution in Sod shock tube are observed and analyzed numerically at the microscopic level for the first time. Our results present the reference scales for the choice of minimal simulation scale in which the continuum medium models are used, and for the criteria whether the flow characteristics obtained by simulations can be treated as real physical characteristics.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0103}, url = {http://global-sci.org/intro/article_detail/cicp/13456.html} }A variety of numerical simulations based on continuum medium models have been carried out in unsteady flows to explore the physical characteristics qualitatively. However, there still lack quantitative valid scales for these models, in which scale the solutions by simulation can be treated as physically credible. In this work, Euler and Navier-Stokes models are implemented on the typical unsteady flow with discontinuities: Sod shock tube problem. Firstly, based on the Boltzmann model whose valid scale is molecule kinetic scale, we compare the values of different moments of Euler and Navier-Stokes to Boltzmann with the evolution of flow. The results provide the valid scales of Euler and Navier-Stokes models quantitatively. Secondly, following the real conditions and parameters in real air, the physical characteristics of waves’ generation and evolution in Sod shock tube are observed and analyzed numerically at the microscopic level for the first time. Our results present the reference scales for the choice of minimal simulation scale in which the continuum medium models are used, and for the criteria whether the flow characteristics obtained by simulations can be treated as real physical characteristics.