- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 27 (2020), pp. 480-502.
Published online: 2019-12
Cited by
- BibTex
- RIS
- TXT
We study the two-component Camassa-Holm (2CH) equations as a model for the long time water wave propagation. Compared with the classical Saint-Venant system, it has the advantage of preserving the waves amplitude and shape for a long time. We present two different numerical methods—finite volume (FV) and hybrid finite-volume-particle (FVP) ones. In the FV setup, we rewrite the 2CH equations in a conservative form and numerically solve it by the central-upwind scheme, while in the FVP method, we apply the central-upwind scheme to the density equation only while solving the momentum and velocity equations by a deterministic particle method. Numerical examples are shown to verify the accuracy of both FV and FVP methods. The obtained results demonstrate that the FVP method outperforms the FV method and achieves a superior resolution thanks to a low-diffusive nature of a particle approximation.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0325}, url = {http://global-sci.org/intro/article_detail/cicp/13455.html} }We study the two-component Camassa-Holm (2CH) equations as a model for the long time water wave propagation. Compared with the classical Saint-Venant system, it has the advantage of preserving the waves amplitude and shape for a long time. We present two different numerical methods—finite volume (FV) and hybrid finite-volume-particle (FVP) ones. In the FV setup, we rewrite the 2CH equations in a conservative form and numerically solve it by the central-upwind scheme, while in the FVP method, we apply the central-upwind scheme to the density equation only while solving the momentum and velocity equations by a deterministic particle method. Numerical examples are shown to verify the accuracy of both FV and FVP methods. The obtained results demonstrate that the FVP method outperforms the FV method and achieves a superior resolution thanks to a low-diffusive nature of a particle approximation.