- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 27 (2020), pp. 251-273.
Published online: 2019-10
Cited by
- BibTex
- RIS
- TXT
A shifted-inverse iteration is proposed for the finite element discretization of the elastic eigenvalue problem. The method integrates the multigrid scheme and adaptive algorithm to achieve high efficiency and accuracy. Error estimates and optimal convergence for the proposed method are proved. Numerical examples show that the proposed method inherits the advantages of both ingredients and can compute low regularity eigenfunctions effectively.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0293}, url = {http://global-sci.org/intro/article_detail/cicp/13321.html} }A shifted-inverse iteration is proposed for the finite element discretization of the elastic eigenvalue problem. The method integrates the multigrid scheme and adaptive algorithm to achieve high efficiency and accuracy. Error estimates and optimal convergence for the proposed method are proved. Numerical examples show that the proposed method inherits the advantages of both ingredients and can compute low regularity eigenfunctions effectively.