- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 27 (2020), pp. 1-32.
Published online: 2019-10
Cited by
- BibTex
- RIS
- TXT
A parametric reduced order model based on proper orthogonal decomposition with Galerkin projection has been developed and applied for the modeling of heat transport in T-junction pipes which are widely found in nuclear power reactor cooling systems. Thermal mixing of different temperature coolants in T-junction pipes leads to temperature fluctuations and this could potentially cause thermal fatigue in the pipe walls. The novelty of this paper is the development of a parametric ROM considering the three dimensional, incompressible, unsteady Navier-Stokes equations coupled with the heat transport equation in a finite volume regime. Two different parametric cases are presented in this paper: parametrization of the inlet temperatures and parametrization of the kinematic viscosity. Different training spaces are considered and the results are compared against the full order model. The first test case results to a computational speed-up factor of 374 while the second test case to one of 211.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0207}, url = {http://global-sci.org/intro/article_detail/cicp/13312.html} }A parametric reduced order model based on proper orthogonal decomposition with Galerkin projection has been developed and applied for the modeling of heat transport in T-junction pipes which are widely found in nuclear power reactor cooling systems. Thermal mixing of different temperature coolants in T-junction pipes leads to temperature fluctuations and this could potentially cause thermal fatigue in the pipe walls. The novelty of this paper is the development of a parametric ROM considering the three dimensional, incompressible, unsteady Navier-Stokes equations coupled with the heat transport equation in a finite volume regime. Two different parametric cases are presented in this paper: parametrization of the inlet temperatures and parametrization of the kinematic viscosity. Different training spaces are considered and the results are compared against the full order model. The first test case results to a computational speed-up factor of 374 while the second test case to one of 211.