- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 26 (2019), pp. 1471-1489.
Published online: 2019-08
Cited by
- BibTex
- RIS
- TXT
This paper is devoted to finite element analysis for the magneto-heat coupling model which governs the electromagnetic fields in large power transformers. The model, which couples Maxwell's equations and Heat equation through Ohmic heat source, is nonlinear. First we derive an equivalent weak formulation for the nonlinear magneto-heat model. We propose a linearized and temporally discrete scheme to approximate the continuous problem. The well-posedness and error estimates are proven for the semi-discrete scheme. Based on the results, we propose a fully discrete finite element problem and prove the error estimates for the approximate solutions. To validate the magneto-heat model and verify the efficiency of the finite element method, we compute an engineering benchmark problem of the International Compumag Society, P21b-MN. The numerical results agree well with experimental data.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.2019.js60.08}, url = {http://global-sci.org/intro/article_detail/cicp/13272.html} }This paper is devoted to finite element analysis for the magneto-heat coupling model which governs the electromagnetic fields in large power transformers. The model, which couples Maxwell's equations and Heat equation through Ohmic heat source, is nonlinear. First we derive an equivalent weak formulation for the nonlinear magneto-heat model. We propose a linearized and temporally discrete scheme to approximate the continuous problem. The well-posedness and error estimates are proven for the semi-discrete scheme. Based on the results, we propose a fully discrete finite element problem and prove the error estimates for the approximate solutions. To validate the magneto-heat model and verify the efficiency of the finite element method, we compute an engineering benchmark problem of the International Compumag Society, P21b-MN. The numerical results agree well with experimental data.