- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Numerical Analysis of the Midpoint Scheme for the Generalized Benjamin-Bona-Mahony Equation with White Noise Dispersion
Commun. Comput. Phys., 26 (2019), pp. 1397-1414.
Published online: 2019-08
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{CiCP-26-1397,
author = {Fenger , GuillaumeGoubet , Olivier and Mammeri , Youcef},
title = {Numerical Analysis of the Midpoint Scheme for the Generalized Benjamin-Bona-Mahony Equation with White Noise Dispersion},
journal = {Communications in Computational Physics},
year = {2019},
volume = {26},
number = {5},
pages = {1397--1414},
abstract = {
We consider a midpoint scheme to approximate analytical solutions to a white noise driven BBM equation that reads du−duxx+ux ◦dW+upuxdt=0. We prove the well-posedness of the time-discrete approximation scheme and we provide the strong error order, which is 1.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.2019.js60.02}, url = {http://global-sci.org/intro/article_detail/cicp/13269.html} }
TY - JOUR
T1 - Numerical Analysis of the Midpoint Scheme for the Generalized Benjamin-Bona-Mahony Equation with White Noise Dispersion
AU - Fenger , Guillaume
AU - Goubet , Olivier
AU - Mammeri , Youcef
JO - Communications in Computational Physics
VL - 5
SP - 1397
EP - 1414
PY - 2019
DA - 2019/08
SN - 26
DO - http://doi.org/10.4208/cicp.2019.js60.02
UR - https://global-sci.org/intro/article_detail/cicp/13269.html
KW - Stochastic long wave equations, midpoint scheme, strong order of convergence.
AB -
We consider a midpoint scheme to approximate analytical solutions to a white noise driven BBM equation that reads du−duxx+ux ◦dW+upuxdt=0. We prove the well-posedness of the time-discrete approximation scheme and we provide the strong error order, which is 1.
Fenger , GuillaumeGoubet , Olivier and Mammeri , Youcef. (2019). Numerical Analysis of the Midpoint Scheme for the Generalized Benjamin-Bona-Mahony Equation with White Noise Dispersion.
Communications in Computational Physics. 26 (5).
1397-1414.
doi:10.4208/cicp.2019.js60.02
Copy to clipboard