- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 26 (2019), pp. 1249-1273.
Published online: 2019-08
Cited by
- BibTex
- RIS
- TXT
In this paper, an efficient spectral Petrov-Galerkin time-stepping method for solving nonlinear Hamiltonian systems is presented and studied. Conservation properties of the proposed method (including symplectic structure preserving and energy conservation) are discussed. Iterative algorithm on how to discretize the nonlinear term is introduced and the uniqueness, stability and convergence properties of the iterative algorithm are also established. Finally, numerical experiments are presented to verify the efficiency of our algorithm.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.2019.js60.11}, url = {http://global-sci.org/intro/article_detail/cicp/13264.html} }In this paper, an efficient spectral Petrov-Galerkin time-stepping method for solving nonlinear Hamiltonian systems is presented and studied. Conservation properties of the proposed method (including symplectic structure preserving and energy conservation) are discussed. Iterative algorithm on how to discretize the nonlinear term is introduced and the uniqueness, stability and convergence properties of the iterative algorithm are also established. Finally, numerical experiments are presented to verify the efficiency of our algorithm.