- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 26 (2019), pp. 1196-1223.
Published online: 2019-07
Cited by
- BibTex
- RIS
- TXT
The projector augmented-wave (PAW) method is an important approach for electronic structure calculations based on the Kohn–Sham density functional theory. And the PAW atomic dataset plays an essential role in the implementation and application of the method. The intensive use of proprietary datasets with limited metadata in previous years has led to difficulties in both the cross-validation of PAW codes and the understanding of the accuracy and transferability of PAW atomic data. In this work, we focus on the open-source ABINIT Jollet–Torrent–Holzwarth (JTH) dataset library in the PAW-XML format and investigate the implementation techniques to clarify how the atomic data participate in the computations. We propose an intermediate dataset that extends the original PAW-XML one by atomic quantities in derived forms, which facilitate the PAW implementation using the JTH library and cover the differences between PAW datasets. Our implementation is validated by comparing the structural property results of representative bulk materials and molecules with those calculated by ABINIT using the same datasets. Moreover, we discuss the feasibility of using the intermediate dataset for a quick support of PAW-XML datasets in existing PAW code.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0302}, url = {http://global-sci.org/intro/article_detail/cicp/13234.html} }The projector augmented-wave (PAW) method is an important approach for electronic structure calculations based on the Kohn–Sham density functional theory. And the PAW atomic dataset plays an essential role in the implementation and application of the method. The intensive use of proprietary datasets with limited metadata in previous years has led to difficulties in both the cross-validation of PAW codes and the understanding of the accuracy and transferability of PAW atomic data. In this work, we focus on the open-source ABINIT Jollet–Torrent–Holzwarth (JTH) dataset library in the PAW-XML format and investigate the implementation techniques to clarify how the atomic data participate in the computations. We propose an intermediate dataset that extends the original PAW-XML one by atomic quantities in derived forms, which facilitate the PAW implementation using the JTH library and cover the differences between PAW datasets. Our implementation is validated by comparing the structural property results of representative bulk materials and molecules with those calculated by ABINIT using the same datasets. Moreover, we discuss the feasibility of using the intermediate dataset for a quick support of PAW-XML datasets in existing PAW code.