- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 26 (2019), pp. 1143-1177.
Published online: 2019-07
Cited by
- BibTex
- RIS
- TXT
We propose a simple numerical algorithm to estimate the finite time Lyapunov exponent (FTLE) in dynamical systems from only a sparse number of Lagrangian particle trajectories. The method first reconstructs the flow field using the radial basis function (RBF) and then uses either the Lagrangian or the Eulerian approach to determine the corresponding flow map. We also develop a simple algorithm based on the Schur complement for updating, rather than recomputing, the reconstruction in the RBF when new trajectory data is made available in applications. We will demonstrate the effectiveness of the proposed method using examples from autonomous and aperiodic flows, and also measurements from real-life data.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0149}, url = {http://global-sci.org/intro/article_detail/cicp/13232.html} }We propose a simple numerical algorithm to estimate the finite time Lyapunov exponent (FTLE) in dynamical systems from only a sparse number of Lagrangian particle trajectories. The method first reconstructs the flow field using the radial basis function (RBF) and then uses either the Lagrangian or the Eulerian approach to determine the corresponding flow map. We also develop a simple algorithm based on the Schur complement for updating, rather than recomputing, the reconstruction in the RBF when new trajectory data is made available in applications. We will demonstrate the effectiveness of the proposed method using examples from autonomous and aperiodic flows, and also measurements from real-life data.