- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 26 (2019), pp. 531-557.
Published online: 2019-04
Cited by
- BibTex
- RIS
- TXT
In this paper, we consider the semi-implicit spectral deferred correction (SDC) methods for hyperbolic systems of conservation laws with stiff relaxation terms. The relaxation term is treated implicitly, and the convection terms are treated by explicit schemes. The SDC schemes proposed are asymptotic preserving (AP) in the zero relaxation limit and can be constructed easily and systematically for any order of accuracy. Weighted essentially non-oscillatory (WENO) schemes are adopted in spatial discretization to achieve high order accuracy. After a description of the asymptotic preserving property of the SDC schemes, several applications will be presented to demonstrate the stiff accuracy and capability of the schemes.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0067}, url = {http://global-sci.org/intro/article_detail/cicp/13101.html} }In this paper, we consider the semi-implicit spectral deferred correction (SDC) methods for hyperbolic systems of conservation laws with stiff relaxation terms. The relaxation term is treated implicitly, and the convection terms are treated by explicit schemes. The SDC schemes proposed are asymptotic preserving (AP) in the zero relaxation limit and can be constructed easily and systematically for any order of accuracy. Weighted essentially non-oscillatory (WENO) schemes are adopted in spatial discretization to achieve high order accuracy. After a description of the asymptotic preserving property of the SDC schemes, several applications will be presented to demonstrate the stiff accuracy and capability of the schemes.