- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 26 (2019), pp. 469-505.
Published online: 2019-04
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
In this paper, we reformulate the semi-classical Schrödinger equation in the presence of electromagnetic field by the Gaussian wave packet transform. With this approach, the highly oscillatory Schrödinger equation is equivalently transformed into another Schrödinger type wave equation, the w equation, which is essentially not oscillatory and thus requires much less computational effort. We propose two numerical methods to solve the w equation, where the Hamiltonian is either divided into the kinetic, the potential and the convection part, or into the kinetic and the potential-convection part. The convection, or the potential-convection part is treated by a semi-Lagrangian method, while the kinetic part is solved by the Fourier spectral method. The numerical methods are proved to be unconditionally stable, spectrally accurate in space and second order accurate in time, and in principle they can be extended to higher order schemes in time. Various one dimensional and multidimensional numerical tests are provided to justify the properties of the proposed methods.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0131}, url = {http://global-sci.org/intro/article_detail/cicp/13099.html} }In this paper, we reformulate the semi-classical Schrödinger equation in the presence of electromagnetic field by the Gaussian wave packet transform. With this approach, the highly oscillatory Schrödinger equation is equivalently transformed into another Schrödinger type wave equation, the w equation, which is essentially not oscillatory and thus requires much less computational effort. We propose two numerical methods to solve the w equation, where the Hamiltonian is either divided into the kinetic, the potential and the convection part, or into the kinetic and the potential-convection part. The convection, or the potential-convection part is treated by a semi-Lagrangian method, while the kinetic part is solved by the Fourier spectral method. The numerical methods are proved to be unconditionally stable, spectrally accurate in space and second order accurate in time, and in principle they can be extended to higher order schemes in time. Various one dimensional and multidimensional numerical tests are provided to justify the properties of the proposed methods.