- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 26 (2019), pp. 413-433.
Published online: 2019-04
Cited by
- BibTex
- RIS
- TXT
A new approach for numerically solving 3-T diffusion equations on 2-D scattered point distributions is developed by the finite point method. In this paper, a new method for selecting neighboring points is designed, which is robust and well reflects variations of gradients of physical quantities. Based on this, a new discretization method is proposed for the diffusion operator, which results in a new scheme with the stencil of minimal size for numerically solving nonlinear diffusion equations. Distinguished from most of meshless methods often involving dozens of neighboring points, this method needs only five neighbors of the point under consideration. Numerical simulations show the good performance of the proposed methodology.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0223}, url = {http://global-sci.org/intro/article_detail/cicp/13097.html} }A new approach for numerically solving 3-T diffusion equations on 2-D scattered point distributions is developed by the finite point method. In this paper, a new method for selecting neighboring points is designed, which is robust and well reflects variations of gradients of physical quantities. Based on this, a new discretization method is proposed for the diffusion operator, which results in a new scheme with the stencil of minimal size for numerically solving nonlinear diffusion equations. Distinguished from most of meshless methods often involving dozens of neighboring points, this method needs only five neighbors of the point under consideration. Numerical simulations show the good performance of the proposed methodology.