- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 26 (2019), pp. 87-113.
Published online: 2019-02
Cited by
- BibTex
- RIS
- TXT
This paper presents a high order time discretization method by combining the semi-implicit spectral deferred correction method with energy stable linear schemes to simulate a series of phase field problems. We start with the linear scheme, which is based on the invariant energy quadratization approach and is proved to be linear unconditionally energy stable. The scheme also takes advantage of avoiding nonlinear iteration and the restriction of time step to guarantee the nonlinear system uniquely solvable. Moreover, the scheme leads to linear algebraic system to solve at each iteration, and we employ the multigrid solver to solve it efficiently. Numerical results are given to illustrate that the combination of local discontinuous Galerkin (LDG) spatial discretization and the high order temporal scheme is a practical, accurate and efficient simulation tool when solving phase field problems. Namely, we can obtain high order accuracy in both time and space by solving some simple linear algebraic equations.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0034}, url = {http://global-sci.org/intro/article_detail/cicp/13027.html} }This paper presents a high order time discretization method by combining the semi-implicit spectral deferred correction method with energy stable linear schemes to simulate a series of phase field problems. We start with the linear scheme, which is based on the invariant energy quadratization approach and is proved to be linear unconditionally energy stable. The scheme also takes advantage of avoiding nonlinear iteration and the restriction of time step to guarantee the nonlinear system uniquely solvable. Moreover, the scheme leads to linear algebraic system to solve at each iteration, and we employ the multigrid solver to solve it efficiently. Numerical results are given to illustrate that the combination of local discontinuous Galerkin (LDG) spatial discretization and the high order temporal scheme is a practical, accurate and efficient simulation tool when solving phase field problems. Namely, we can obtain high order accuracy in both time and space by solving some simple linear algebraic equations.