- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 25 (2019), pp. 1591-1612.
Published online: 2019-01
Cited by
- BibTex
- RIS
- TXT
Random rough textures can increase the absorbing efficiency of solar cells by trapping the optical light and increasing the optical path of photons. In this paper, we are concerned with optimal design of random rough surfaces in thin-film solar cells. We formulate the design problem as a random PDE constrained optimization problem and employ gradient-based methods for solving the problem numerically. To evaluate the gradient of the objective function, the Monte-Carlo method is used for sampling the probability space and the adjoint state method is employed to calculate the gradient at each sample. Numerical examples are shown to test the efficiency of the proposed algorithm. It is demonstrated that optimally obtained random textures yield an enormous absorption enhancement and a higher photon absorptance than that of existing random textures.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0013}, url = {http://global-sci.org/intro/article_detail/cicp/12963.html} }Random rough textures can increase the absorbing efficiency of solar cells by trapping the optical light and increasing the optical path of photons. In this paper, we are concerned with optimal design of random rough surfaces in thin-film solar cells. We formulate the design problem as a random PDE constrained optimization problem and employ gradient-based methods for solving the problem numerically. To evaluate the gradient of the objective function, the Monte-Carlo method is used for sampling the probability space and the adjoint state method is employed to calculate the gradient at each sample. Numerical examples are shown to test the efficiency of the proposed algorithm. It is demonstrated that optimally obtained random textures yield an enormous absorption enhancement and a higher photon absorptance than that of existing random textures.