- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 25 (2019), pp. 988-1009.
Published online: 2018-12
Cited by
- BibTex
- RIS
- TXT
The discontinuous Galerkin (DG) method has attained increasing popularity for solving the incompressible Navier-Stokes (INS) equations in recent years. In this work, we present a novel DG discretization for solving the two-dimensional INS equations in which the inviscid term of the INS equations is split into two parts, the Stokes operator and the nonlinear convective term, and treated separately. The Stokes operator is discretized using the artificial compressibility flux which is provided by the (exact) solution of a Riemann problem associated with a local artificial compressibility perturbation of the Stokes system, while the nonlinear term is discretized in divergency form by using the local Lax-Friedrichs fluxes; thus, local conservativity is inherent. Unlike the existing artificial compressibility flux for the DG discretization of the INS equations which needs to solve a Riemann problem for a nonlinear system by numerical iteration, the separate treatment of the nonlinear term from the Stokes operator makes the Riemann problem become linear and can be solved explicitly and straightforwardly, therefore, no iterative procedure is further required. A number of test cases with a wide range of Reynolds number are presented to assess the performance of the proposed method, which demonstrates its potential to be an alternative approach for high order numerical simulations of incompressible flows.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0051}, url = {http://global-sci.org/intro/article_detail/cicp/12887.html} }The discontinuous Galerkin (DG) method has attained increasing popularity for solving the incompressible Navier-Stokes (INS) equations in recent years. In this work, we present a novel DG discretization for solving the two-dimensional INS equations in which the inviscid term of the INS equations is split into two parts, the Stokes operator and the nonlinear convective term, and treated separately. The Stokes operator is discretized using the artificial compressibility flux which is provided by the (exact) solution of a Riemann problem associated with a local artificial compressibility perturbation of the Stokes system, while the nonlinear term is discretized in divergency form by using the local Lax-Friedrichs fluxes; thus, local conservativity is inherent. Unlike the existing artificial compressibility flux for the DG discretization of the INS equations which needs to solve a Riemann problem for a nonlinear system by numerical iteration, the separate treatment of the nonlinear term from the Stokes operator makes the Riemann problem become linear and can be solved explicitly and straightforwardly, therefore, no iterative procedure is further required. A number of test cases with a wide range of Reynolds number are presented to assess the performance of the proposed method, which demonstrates its potential to be an alternative approach for high order numerical simulations of incompressible flows.