- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 25 (2019), pp. 781-811.
Published online: 2018-11
Cited by
- BibTex
- RIS
- TXT
The exact Riemann solver for one-dimensional elastic-perfectly plastic solid has been presented in the previous work [S. Gao and T. G. Liu, Adv. Appl. Math. Mech., 9(3), 2017, 621-650], but its iterative process of finding nonlinear equation solution is time-consuming. In this paper, to enhance the computational efficiency of the exact Riemann solver and provide a more practical Riemann solver for actual implementation, we design a non-iterative solution structure-based adaptive approximate (SSAA) Riemann solver for one-dimensional elastic-perfectly plastic solid. Judging the solution structure adaptively and then solving the Riemann problem with corresponding solution structure non-iteratively can shorten the computing time and meanwhile guarantee the correctness of the final result. Numerical performance tests manifest that the exact Riemann solver is indeed time-consuming and the ordinary approximate Riemann solver with fixed three-wave solution structure is of great error, whereas the SSAA Riemann solver is of both efficiency and accuracy. Error estimation further indicates that the SSAA Riemann solver has at least second-order accuracy to approach the exact solution of the states in the star region.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0182}, url = {http://global-sci.org/intro/article_detail/cicp/12829.html} }The exact Riemann solver for one-dimensional elastic-perfectly plastic solid has been presented in the previous work [S. Gao and T. G. Liu, Adv. Appl. Math. Mech., 9(3), 2017, 621-650], but its iterative process of finding nonlinear equation solution is time-consuming. In this paper, to enhance the computational efficiency of the exact Riemann solver and provide a more practical Riemann solver for actual implementation, we design a non-iterative solution structure-based adaptive approximate (SSAA) Riemann solver for one-dimensional elastic-perfectly plastic solid. Judging the solution structure adaptively and then solving the Riemann problem with corresponding solution structure non-iteratively can shorten the computing time and meanwhile guarantee the correctness of the final result. Numerical performance tests manifest that the exact Riemann solver is indeed time-consuming and the ordinary approximate Riemann solver with fixed three-wave solution structure is of great error, whereas the SSAA Riemann solver is of both efficiency and accuracy. Error estimation further indicates that the SSAA Riemann solver has at least second-order accuracy to approach the exact solution of the states in the star region.