- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 25 (2019), pp. 669-702.
Published online: 2018-11
Cited by
- BibTex
- RIS
- TXT
Shallow flow models are used for a large number of applications including weather forecasting, open channel hydraulics and simulation-based natural hazard assessment. In these applications the shallowness of the process motivates depth-averaging. While the shallow flow formulation is advantageous in terms of computational efficiency, it also comes at the price of losing vertical information such as the flow's velocity profile. This gives rise to a model error, which limits the shallow flow model's predictive power and is often not explicitly quantifiable. We propose the use of vertical moments to overcome this problem. The shallow moment approximation preserves information on the vertical flow structure while still making use of the simplifying framework of depth-averaging. In this article, we derive a generic shallow flow moment system of arbitrary order starting from a set of balance laws, which has been reduced by scaling arguments. The derivation is based on a fully vertically resolved reference model with the vertical coordinate mapped onto the unit interval. We specify the shallow flow moment hierarchy for kinematic and Newtonian flow conditions and present 1D numerical results for shallow moment systems up to third order. Finally, we assess their performance with respect to both the standard shallow flow equations as well as with respect to the vertically resolved reference model. Our results show that depending on the parameter regime, e.g. friction and slip, shallow moment approximations significantly reduce the model error in shallow flow regimes and have a lot of potential to increase the predictive power of shallow flow models, while keeping them computationally cost efficient.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0263}, url = {http://global-sci.org/intro/article_detail/cicp/12825.html} }Shallow flow models are used for a large number of applications including weather forecasting, open channel hydraulics and simulation-based natural hazard assessment. In these applications the shallowness of the process motivates depth-averaging. While the shallow flow formulation is advantageous in terms of computational efficiency, it also comes at the price of losing vertical information such as the flow's velocity profile. This gives rise to a model error, which limits the shallow flow model's predictive power and is often not explicitly quantifiable. We propose the use of vertical moments to overcome this problem. The shallow moment approximation preserves information on the vertical flow structure while still making use of the simplifying framework of depth-averaging. In this article, we derive a generic shallow flow moment system of arbitrary order starting from a set of balance laws, which has been reduced by scaling arguments. The derivation is based on a fully vertically resolved reference model with the vertical coordinate mapped onto the unit interval. We specify the shallow flow moment hierarchy for kinematic and Newtonian flow conditions and present 1D numerical results for shallow moment systems up to third order. Finally, we assess their performance with respect to both the standard shallow flow equations as well as with respect to the vertically resolved reference model. Our results show that depending on the parameter regime, e.g. friction and slip, shallow moment approximations significantly reduce the model error in shallow flow regimes and have a lot of potential to increase the predictive power of shallow flow models, while keeping them computationally cost efficient.