- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 25 (2019), pp. 218-243.
Published online: 2018-09
Cited by
- BibTex
- RIS
- TXT
The aim of this paper is to derive a stable and efficient scheme for solving the one-dimensional time-fractional nonlinear Schrödinger equation set in an unbounded domain. We first derive absorbing boundary conditions for the fractional system by using the unified approach introduced in [47, 48] and a linearization procedure. Then, the initial boundary-value problem for the fractional system with ABCs is discretized, a stability analysis is developed and the error estimate O(h2+τ) is stated. To accelerate the L1-scheme in time, a sum-of-exponentials approximation is introduced to speed-up the evaluation of the Caputo fractional derivative. The resulting algorithm is highly efficient for long time simulations. Finally, we end the paper by reporting some numerical simulations to validate the properties (accuracy and efficiency) of the derived scheme.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0195}, url = {http://global-sci.org/intro/article_detail/cicp/12669.html} }The aim of this paper is to derive a stable and efficient scheme for solving the one-dimensional time-fractional nonlinear Schrödinger equation set in an unbounded domain. We first derive absorbing boundary conditions for the fractional system by using the unified approach introduced in [47, 48] and a linearization procedure. Then, the initial boundary-value problem for the fractional system with ABCs is discretized, a stability analysis is developed and the error estimate O(h2+τ) is stated. To accelerate the L1-scheme in time, a sum-of-exponentials approximation is introduced to speed-up the evaluation of the Caputo fractional derivative. The resulting algorithm is highly efficient for long time simulations. Finally, we end the paper by reporting some numerical simulations to validate the properties (accuracy and efficiency) of the derived scheme.