- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 25 (2019), pp. 1-40.
Published online: 2018-09
Cited by
- BibTex
- RIS
- TXT
We present a formula approximating the mean escape time (MST) of a particle from a tilted multi-periodic potential well. The potential function consists of a weighted sum of a finite number of component functions, each of which is periodic. For this particular case, the least period of the potential function is a common period amongst all of its component functions. An approximation of the MST for the potential function is derived, and this approximation takes the form of a product of the MSTs for each of the individual periodic component functions. Our first example illustrates the computational advantages of using the approximation for model validation and parameter tuning in the context of the biological application of DNA transcription. We also use this formula to approximate the MST for an arbitrary tilted periodic potential by the product of MSTs of a finite number of its Fourier modes. Two examples using truncated Fourier series are presented and analyzed.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0133}, url = {http://global-sci.org/intro/article_detail/cicp/12661.html} }We present a formula approximating the mean escape time (MST) of a particle from a tilted multi-periodic potential well. The potential function consists of a weighted sum of a finite number of component functions, each of which is periodic. For this particular case, the least period of the potential function is a common period amongst all of its component functions. An approximation of the MST for the potential function is derived, and this approximation takes the form of a product of the MSTs for each of the individual periodic component functions. Our first example illustrates the computational advantages of using the approximation for model validation and parameter tuning in the context of the biological application of DNA transcription. We also use this formula to approximate the MST for an arbitrary tilted periodic potential by the product of MSTs of a finite number of its Fourier modes. Two examples using truncated Fourier series are presented and analyzed.