- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 24 (2018), pp. 1326-1354.
Published online: 2018-06
Cited by
- BibTex
- RIS
- TXT
This work is devoted to the derivation of an admissible asymptotic-preserving scheme for the electronic $M_1$ model in the diffusive regime. A numerical scheme is proposed in order to deal with the mixed derivatives which arise in the diffusive limit leading to an anisotropic diffusion. The derived numerical scheme preserves the realisability domain and enjoys asymptotic-preserving properties correctly handling the diffusive limit recovering the relevant limit equation. In addition, the cases of non constants electric field and collisional parameter are naturally taken into account with the present approach. Numerical test cases validate the considered scheme in the non-collisional and diffusive limits.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0188}, url = {http://global-sci.org/intro/article_detail/cicp/12480.html} }This work is devoted to the derivation of an admissible asymptotic-preserving scheme for the electronic $M_1$ model in the diffusive regime. A numerical scheme is proposed in order to deal with the mixed derivatives which arise in the diffusive limit leading to an anisotropic diffusion. The derived numerical scheme preserves the realisability domain and enjoys asymptotic-preserving properties correctly handling the diffusive limit recovering the relevant limit equation. In addition, the cases of non constants electric field and collisional parameter are naturally taken into account with the present approach. Numerical test cases validate the considered scheme in the non-collisional and diffusive limits.