- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 24 (2018), pp. 1300-1325.
Published online: 2018-06
Cited by
- BibTex
- RIS
- TXT
A direct Arbitrary Lagrangian Eulerian (ALE) method based on multi-moment finite volume scheme is developed for the Euler equations of compressible gas in 1D and 2D space. Both the volume integrated average (VIA) and the point values (PV) at cell vertices, which are used for high-order reconstructions, are treated as the computational variables and updated simultaneously by numerical formulations in integral and differential forms respectively. The VIAs of the conservative variables are solved by a finite volume method in the integral form of the governing equations to ensure the numerical conservativeness; whereas, the governing equations of differential form are solved for the PVs of the primitive variables to avoid the additional source terms generated from moving mesh, which largely simplifies the solution procedure. Numerical tests in both 1D and 2D are presented to demonstrate the performance of the proposed ALE scheme. The present multi-moment finite volume formulation consistent with moving meshes provides a high-order and efficient ALE computational model for compressible flows.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0189}, url = {http://global-sci.org/intro/article_detail/cicp/12479.html} }A direct Arbitrary Lagrangian Eulerian (ALE) method based on multi-moment finite volume scheme is developed for the Euler equations of compressible gas in 1D and 2D space. Both the volume integrated average (VIA) and the point values (PV) at cell vertices, which are used for high-order reconstructions, are treated as the computational variables and updated simultaneously by numerical formulations in integral and differential forms respectively. The VIAs of the conservative variables are solved by a finite volume method in the integral form of the governing equations to ensure the numerical conservativeness; whereas, the governing equations of differential form are solved for the PVs of the primitive variables to avoid the additional source terms generated from moving mesh, which largely simplifies the solution procedure. Numerical tests in both 1D and 2D are presented to demonstrate the performance of the proposed ALE scheme. The present multi-moment finite volume formulation consistent with moving meshes provides a high-order and efficient ALE computational model for compressible flows.