- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 24 (2018), pp. 774-790.
Published online: 2018-05
Cited by
- BibTex
- RIS
- TXT
In this work, a second-order high-resolution LAgrangian method with a Vorticity-based Adaptive Nodal Solver (LAVANS) is proposed to overcome the numerical difficulty of traditional Lagrangian methods for the simulation of multidimensional flows. The work mainly include three aspects to improve the performance of the traditional CAVEAT-type cell-centered Lagrangian method. First, a vorticity-based adaptive least-squares method for vertex velocity computation is proposed to suppress nonphysical mesh distortion caused by the traditional five-point-stencil least-squares method. Second, a simple interface flux modification is proposed such that the geometry conservation law is satisfied. Third, a generalized Riemann problem solver is employed in the LAVANS scheme to achieve one-step time-space second-order accuracy. Some typical benchmark numerical tests validate the performance of the LAVANS scheme.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0068}, url = {http://global-sci.org/intro/article_detail/cicp/12280.html} }In this work, a second-order high-resolution LAgrangian method with a Vorticity-based Adaptive Nodal Solver (LAVANS) is proposed to overcome the numerical difficulty of traditional Lagrangian methods for the simulation of multidimensional flows. The work mainly include three aspects to improve the performance of the traditional CAVEAT-type cell-centered Lagrangian method. First, a vorticity-based adaptive least-squares method for vertex velocity computation is proposed to suppress nonphysical mesh distortion caused by the traditional five-point-stencil least-squares method. Second, a simple interface flux modification is proposed such that the geometry conservation law is satisfied. Third, a generalized Riemann problem solver is employed in the LAVANS scheme to achieve one-step time-space second-order accuracy. Some typical benchmark numerical tests validate the performance of the LAVANS scheme.