- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 24 (2018), pp. 672-694.
Published online: 2018-05
Cited by
- BibTex
- RIS
- TXT
This work presents a set of preconditioning strategies able to significantly accelerate the performance of fully implicit energy-conserving Particle-in-Cell methods to a level that becomes competitive with semi-implicit methods. We compare three different preconditioners. We consider three methods and compare them with a straight unpreconditioned Jacobian Free Newton Krylov (JFNK) implementation. The first two focus, respectively, on improving the handling of particles (particle hiding) or fields (field hiding) within the JFNK iteration. The third uses the field hiding preconditioner within a direct Newton iteration where a Schwarz-decomposed Jacobian is computed analytically. Clearly, field hiding used with JFNK or with the direct Newton-Schwarz (DNS) method outperforms all method. We compare these implementations with a recent semi-implicit energy conserving scheme. Fully implicit methods are still lag behind in cost per cycle but not by a large margin when proper preconditioning is used. However, for exact energy conservation, preconditioned fully implicit methods are significantly easier to implement compared with semi-implicit methods and can be extended to fully relativistic physics.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0171}, url = {http://global-sci.org/intro/article_detail/cicp/12276.html} }This work presents a set of preconditioning strategies able to significantly accelerate the performance of fully implicit energy-conserving Particle-in-Cell methods to a level that becomes competitive with semi-implicit methods. We compare three different preconditioners. We consider three methods and compare them with a straight unpreconditioned Jacobian Free Newton Krylov (JFNK) implementation. The first two focus, respectively, on improving the handling of particles (particle hiding) or fields (field hiding) within the JFNK iteration. The third uses the field hiding preconditioner within a direct Newton iteration where a Schwarz-decomposed Jacobian is computed analytically. Clearly, field hiding used with JFNK or with the direct Newton-Schwarz (DNS) method outperforms all method. We compare these implementations with a recent semi-implicit energy conserving scheme. Fully implicit methods are still lag behind in cost per cycle but not by a large margin when proper preconditioning is used. However, for exact energy conservation, preconditioned fully implicit methods are significantly easier to implement compared with semi-implicit methods and can be extended to fully relativistic physics.