- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 24 (2018), pp. 655-671.
Published online: 2018-05
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
A new finite element (FE) field solver has been implemented in the gyrokinetic toroidal code (GTC) in attempt to extend the simulation domain to magnetic axis and beyond the last closed flux surface, which will enhance the capability the GTC code since the original finite difference (FD) solver will lose its capability in such circumstances. A method of manufactured solution is employed in the unit fidelity test for the new FE field solver, which is then further verified through integrated tests with three typical physical cases for the comparison between the new FE field solver and the original finite difference field solver. The results by the newly implemented FE field solver are in great accord with the original solver.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0139}, url = {http://global-sci.org/intro/article_detail/cicp/12275.html} }A new finite element (FE) field solver has been implemented in the gyrokinetic toroidal code (GTC) in attempt to extend the simulation domain to magnetic axis and beyond the last closed flux surface, which will enhance the capability the GTC code since the original finite difference (FD) solver will lose its capability in such circumstances. A method of manufactured solution is employed in the unit fidelity test for the new FE field solver, which is then further verified through integrated tests with three typical physical cases for the comparison between the new FE field solver and the original finite difference field solver. The results by the newly implemented FE field solver are in great accord with the original solver.