- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 24 (2018), pp. 623-634.
Published online: 2018-05
Cited by
- BibTex
- RIS
- TXT
A class of nonstandard pseudospectral time domain (PSTD) schemes for solving time-dependent hyperbolic and parabolic partial differential equations (PDEs) is introduced. These schemes use the Fourier collocation spectral method to compute spatial gradients and a nonstandard finite difference scheme to integrate forwards in time. The modified denominator function that makes the finite difference time scheme exact is transformed into the spatial frequency domain or k-space using the dispersion relation for the governing PDE. This allows the correction factor to be applied in the spatial frequency domain as part of the spatial gradient calculation. The derived schemes can be formulated to be unconditionally stable, and apply to PDEs in any space dimension. Examples of the resulting nonstandard PSTD schemes for several PDEs are given, including the wave equation, diffusion equation, and convection-diffusion equation.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0192}, url = {http://global-sci.org/intro/article_detail/cicp/12273.html} }A class of nonstandard pseudospectral time domain (PSTD) schemes for solving time-dependent hyperbolic and parabolic partial differential equations (PDEs) is introduced. These schemes use the Fourier collocation spectral method to compute spatial gradients and a nonstandard finite difference scheme to integrate forwards in time. The modified denominator function that makes the finite difference time scheme exact is transformed into the spatial frequency domain or k-space using the dispersion relation for the governing PDE. This allows the correction factor to be applied in the spatial frequency domain as part of the spatial gradient calculation. The derived schemes can be formulated to be unconditionally stable, and apply to PDEs in any space dimension. Examples of the resulting nonstandard PSTD schemes for several PDEs are given, including the wave equation, diffusion equation, and convection-diffusion equation.