- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 24 (2018), pp. 576-592.
Published online: 2018-08
Cited by
- BibTex
- RIS
- TXT
This paper develops an enhanced finite element method for approximating a class of variational problems which exhibits the $Lavrentiev$ $gap$ $phenomenon$ in the sense that the minimum values of the energy functional have a nontrivial gap when the functional is minimized on the spaces $W^{1,1}$ and $W^{1,∞}$. To remedy the standard finite element method, which fails to converge for such variational problems, a simple and effective cut-off procedure is utilized to design the (enhanced finite element) discrete energy functional. In essence the proposed discrete energy functional curbs the gap phenomenon by capping the derivatives of its input on a scale of $\mathcal{O}$($h^{−α}$) (where $h$ denotes the mesh size) for some positive constant $α$. A sufficient condition is proposed for determining the problem-dependent parameter $α$. Extensive 1-D and 2-D numerical experiment results are provided to show the convergence behavior and the performance of the proposed enhanced finite element method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0046}, url = {http://global-sci.org/intro/article_detail/cicp/12253.html} }This paper develops an enhanced finite element method for approximating a class of variational problems which exhibits the $Lavrentiev$ $gap$ $phenomenon$ in the sense that the minimum values of the energy functional have a nontrivial gap when the functional is minimized on the spaces $W^{1,1}$ and $W^{1,∞}$. To remedy the standard finite element method, which fails to converge for such variational problems, a simple and effective cut-off procedure is utilized to design the (enhanced finite element) discrete energy functional. In essence the proposed discrete energy functional curbs the gap phenomenon by capping the derivatives of its input on a scale of $\mathcal{O}$($h^{−α}$) (where $h$ denotes the mesh size) for some positive constant $α$. A sufficient condition is proposed for determining the problem-dependent parameter $α$. Extensive 1-D and 2-D numerical experiment results are provided to show the convergence behavior and the performance of the proposed enhanced finite element method.