- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 22 (2017), pp. 473-493.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
The Shan-Chen multiphase lattice Boltzmann model (LBM) coupled with Carnahan-Starling real-gas equation of state (C-S EOS) was proposed to simulate three-dimensional (3D) cavitation bubbles. Firstly, phase separation processes were predicted and the inter-phase large density ratio over 2×104 was captured successfully. The liquid-vapor density ratio at lower temperature is larger. Secondly, bubble surface tensions were computed and decreased with temperature increasing. Thirdly, the evolution of creation and condensation of cavitation bubbles were obtained. The effectiveness and reliability of present method were verified by energy barrier theory. The influences of temperature, pressure difference and critical bubble radius on cavitation bubbles were analyzed systematically. Only when the bubble radius is larger than the critical value will the cavitation occur, otherwise, cavitation bubbles will dissipate due to condensation. According to the analyses of radius change against time and the variation ratio of bubble radius, critical radius is larger under lower temperature and smaller pressure difference condition, thus bigger seed bubbles are needed to invoke cavitation. Under higher temperature and larger pressure difference, smaller seed bubbles can invoke cavitation and the expanding velocity of cavitation bubbles are faster. The cavitation bubble evolution including formation, developing and collapse was captured successfully under various pressure conditions.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2016-0112}, url = {http://global-sci.org/intro/article_detail/cicp/11307.html} }The Shan-Chen multiphase lattice Boltzmann model (LBM) coupled with Carnahan-Starling real-gas equation of state (C-S EOS) was proposed to simulate three-dimensional (3D) cavitation bubbles. Firstly, phase separation processes were predicted and the inter-phase large density ratio over 2×104 was captured successfully. The liquid-vapor density ratio at lower temperature is larger. Secondly, bubble surface tensions were computed and decreased with temperature increasing. Thirdly, the evolution of creation and condensation of cavitation bubbles were obtained. The effectiveness and reliability of present method were verified by energy barrier theory. The influences of temperature, pressure difference and critical bubble radius on cavitation bubbles were analyzed systematically. Only when the bubble radius is larger than the critical value will the cavitation occur, otherwise, cavitation bubbles will dissipate due to condensation. According to the analyses of radius change against time and the variation ratio of bubble radius, critical radius is larger under lower temperature and smaller pressure difference condition, thus bigger seed bubbles are needed to invoke cavitation. Under higher temperature and larger pressure difference, smaller seed bubbles can invoke cavitation and the expanding velocity of cavitation bubbles are faster. The cavitation bubble evolution including formation, developing and collapse was captured successfully under various pressure conditions.