- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 22 (2017), pp. 441-459.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
Vortex and vorticity are two correlated but fundamentally different concepts which have been the central issues in fluid mechanics research. Vorticity has rigorous mathematical definition (curl of velocity), but no clear physical meaning. Vortex has clear physical meaning (rotation) but no rigorous mathematical definition. For a long time, many people treat them as a same thing. However, based on our high-order direct numerical simulation (DNS), we found that first, "vortex" is not "vorticity tube" or "vortex tube" which is widely defined as a bundle of vorticity lines without any vorticity line leak. Actually, vortex is an open area for vorticity line penetration. Second, vortex is not necessarily congregation of vorticity lines, but dispersion in many 3-dimensional cases. Some textbooks say that vortex cannot end inside the flow field but must end on the solid wall (and/or boundaries). Our DNS observation and many other numerical results show almost all vortices are ended inside the flow field. Finally, a more theoretical study shows that neither vortex nor vorticity line can attach to the solid wall and they must be detached from the wall.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2016-0183}, url = {http://global-sci.org/intro/article_detail/cicp/11305.html} }Vortex and vorticity are two correlated but fundamentally different concepts which have been the central issues in fluid mechanics research. Vorticity has rigorous mathematical definition (curl of velocity), but no clear physical meaning. Vortex has clear physical meaning (rotation) but no rigorous mathematical definition. For a long time, many people treat them as a same thing. However, based on our high-order direct numerical simulation (DNS), we found that first, "vortex" is not "vorticity tube" or "vortex tube" which is widely defined as a bundle of vorticity lines without any vorticity line leak. Actually, vortex is an open area for vorticity line penetration. Second, vortex is not necessarily congregation of vorticity lines, but dispersion in many 3-dimensional cases. Some textbooks say that vortex cannot end inside the flow field but must end on the solid wall (and/or boundaries). Our DNS observation and many other numerical results show almost all vortices are ended inside the flow field. Finally, a more theoretical study shows that neither vortex nor vorticity line can attach to the solid wall and they must be detached from the wall.