- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 21 (2017), pp. 490-514.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
This paper presents an approach using the method of separation of variables applied to 2D Helmholtz equations in the Cartesian coordinate. The solution is then computed by a series of solutions resulted from solving a sequence of 1D problems, in which the 1D solutions are computed using pollution free difference schemes. Moreover, non-polluted numerical integration formulae are constructed to handle the integration due to the forcing term in the inhomogeneous 1D problems. Consequently, the computed solution does not suffer the pollution effect. Another attractive feature of this approach is that a direct method can be effectively applied to solve the tridiagonal matrix resulted from numerical discretization of the 1D Helmholtz equation. The method has been tested to compute 2D Helmholtz solutions simulating electromagnetic scattering from an open large cavity and rectangular waveguide.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2016-0057}, url = {http://global-sci.org/intro/article_detail/cicp/11247.html} }This paper presents an approach using the method of separation of variables applied to 2D Helmholtz equations in the Cartesian coordinate. The solution is then computed by a series of solutions resulted from solving a sequence of 1D problems, in which the 1D solutions are computed using pollution free difference schemes. Moreover, non-polluted numerical integration formulae are constructed to handle the integration due to the forcing term in the inhomogeneous 1D problems. Consequently, the computed solution does not suffer the pollution effect. Another attractive feature of this approach is that a direct method can be effectively applied to solve the tridiagonal matrix resulted from numerical discretization of the 1D Helmholtz equation. The method has been tested to compute 2D Helmholtz solutions simulating electromagnetic scattering from an open large cavity and rectangular waveguide.