- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 21 (2017), pp. 237-270.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
We study the construction of symplectic Runge-Kutta methods for stochastic Hamiltonian systems (SHS). Three types of systems, SHS with multiplicative noise, special separable Hamiltonians and multiple additive noise, respectively, are considered in this paper. Stochastic Runge-Kutta (SRK) methods for these systems are investigated, and the corresponding conditions for SRK methods to preserve the symplectic property are given. Based on the weak/strong order and symplectic conditions, some effective schemes are derived. In particular, using the algebraic computation, we obtained two classes of high weak order symplectic Runge-Kutta methods for SHS with a single multiplicative noise, and two classes of high strong order symplectic RungeKutta methods for SHS with multiple multiplicative and additive noise, respectively. The numerical case studies confirm that the symplectic methods are efficient computational tools for long-term simulations.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.261014.230616a}, url = {http://global-sci.org/intro/article_detail/cicp/11239.html} }We study the construction of symplectic Runge-Kutta methods for stochastic Hamiltonian systems (SHS). Three types of systems, SHS with multiplicative noise, special separable Hamiltonians and multiple additive noise, respectively, are considered in this paper. Stochastic Runge-Kutta (SRK) methods for these systems are investigated, and the corresponding conditions for SRK methods to preserve the symplectic property are given. Based on the weak/strong order and symplectic conditions, some effective schemes are derived. In particular, using the algebraic computation, we obtained two classes of high weak order symplectic Runge-Kutta methods for SHS with a single multiplicative noise, and two classes of high strong order symplectic RungeKutta methods for SHS with multiple multiplicative and additive noise, respectively. The numerical case studies confirm that the symplectic methods are efficient computational tools for long-term simulations.