- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 21 (2017), pp. 182-210.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose a new partitioned approach to compute fluid-structure interaction (FSI) by extending the original direct-forcing technique and integrating it with the immersed boundary method. The fluid and structural equations are calculated separately via their respective disciplinary algorithms, with the fluid motion solved by the immersed boundary method on a uniform Cartesian mesh and the structural motion solved by a finite element method, and their solution data only communicate at the fluid-structure interface. This computational framework is capable of handling FSI problems with sophisticated structures described by detailed constitutive laws. The proposed methods are thoroughly tested through numerical simulations involving viscous fluid flow interacting with rigid, elastic solid, and elastic thin-walled structures.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.080815.090516a}, url = {http://global-sci.org/intro/article_detail/cicp/11237.html} }In this paper, we propose a new partitioned approach to compute fluid-structure interaction (FSI) by extending the original direct-forcing technique and integrating it with the immersed boundary method. The fluid and structural equations are calculated separately via their respective disciplinary algorithms, with the fluid motion solved by the immersed boundary method on a uniform Cartesian mesh and the structural motion solved by a finite element method, and their solution data only communicate at the fluid-structure interface. This computational framework is capable of handling FSI problems with sophisticated structures described by detailed constitutive laws. The proposed methods are thoroughly tested through numerical simulations involving viscous fluid flow interacting with rigid, elastic solid, and elastic thin-walled structures.