- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 23 (2018), pp. 1415-1433.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
We propose a direct imaging method based on reverse time migration (RTM) algorithm for imaging extended targets using electromagnetic waves at a fixed frequency in the rectangular waveguide. The imaging functional is defined as the imaginary part of the cross-correlation of the Green function for Helmholtz equation and the back-propagated electromagnetic field. The resolution of our RTM method for penetrable extended targets is studied by virtue of Helmholtz-Kirchhoff identity in the rectangular domain, which implies that the imaging functional always peaks in the target. Numerical examples are provided to demonstrate the powerful imaging quality and confirm our theoretical results.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0048}, url = {http://global-sci.org/intro/article_detail/cicp/11221.html} }We propose a direct imaging method based on reverse time migration (RTM) algorithm for imaging extended targets using electromagnetic waves at a fixed frequency in the rectangular waveguide. The imaging functional is defined as the imaginary part of the cross-correlation of the Green function for Helmholtz equation and the back-propagated electromagnetic field. The resolution of our RTM method for penetrable extended targets is studied by virtue of Helmholtz-Kirchhoff identity in the rectangular domain, which implies that the imaging functional always peaks in the target. Numerical examples are provided to demonstrate the powerful imaging quality and confirm our theoretical results.