- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 20 (2016), pp. 1443-1465.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
The radiative transfer equation (RTE) arises in many different areas of science and engineering. In this paper, we propose and investigate a discrete-ordinate discontinuous-streamline diffusion (DODSD) method for solving the RTE, which is a combination of the discrete-ordinate technique and the discontinuous-streamline diffusion method. Different from the discrete-ordinate discontinuous Galerkin (DODG) method for the RTE, an artificial diffusion parameter is added to the test functions in the spatial discretization. Stability and error estimates in certain norms are proved. Numerical results show that the proposed method can lead to a more accurate approximation in comparison with the DODG method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.310715.290316a}, url = {http://global-sci.org/intro/article_detail/cicp/11197.html} }The radiative transfer equation (RTE) arises in many different areas of science and engineering. In this paper, we propose and investigate a discrete-ordinate discontinuous-streamline diffusion (DODSD) method for solving the RTE, which is a combination of the discrete-ordinate technique and the discontinuous-streamline diffusion method. Different from the discrete-ordinate discontinuous Galerkin (DODG) method for the RTE, an artificial diffusion parameter is added to the test functions in the spatial discretization. Stability and error estimates in certain norms are proved. Numerical results show that the proposed method can lead to a more accurate approximation in comparison with the DODG method.