- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 20 (2016), pp. 1183-1209.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
The statistical error associated with sampling in the DSMC method can be categorized as type I and II, which are caused by the incorrect rejection and acceptance of the null hypothesis, respectively. In this study, robust global and local automatic steady state detection methods were developed based on an ingenious method based purely on the statistics and kinetics of particles. The key concept is built upon probabilistic automatic reset sampling (PARS) to minimize the type II error caused by incorrect acceptance of the samples that do not belong to the steady state. The global steady state method is based on a relative standard variation of collisional invariants, while the local steady state method is based on local variations in the distribution function of particles at each cell. In order to verify the capability of the new methods, two benchmark cases – the one-dimensional shear-driven Couette flow and the two-dimensional high speed flow past a vertical wall – were extensively investigated. Owing to the combined effects of the automatic detection and local reset sampling, the local steady state detection method yielded a substantial gain of 30-36% in computational cost for the problem studied. Moreover, the local reset feature outperformed the automatic detection feature in overall computational savings.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.080815.240316a}, url = {http://global-sci.org/intro/article_detail/cicp/11187.html} }The statistical error associated with sampling in the DSMC method can be categorized as type I and II, which are caused by the incorrect rejection and acceptance of the null hypothesis, respectively. In this study, robust global and local automatic steady state detection methods were developed based on an ingenious method based purely on the statistics and kinetics of particles. The key concept is built upon probabilistic automatic reset sampling (PARS) to minimize the type II error caused by incorrect acceptance of the samples that do not belong to the steady state. The global steady state method is based on a relative standard variation of collisional invariants, while the local steady state method is based on local variations in the distribution function of particles at each cell. In order to verify the capability of the new methods, two benchmark cases – the one-dimensional shear-driven Couette flow and the two-dimensional high speed flow past a vertical wall – were extensively investigated. Owing to the combined effects of the automatic detection and local reset sampling, the local steady state detection method yielded a substantial gain of 30-36% in computational cost for the problem studied. Moreover, the local reset feature outperformed the automatic detection feature in overall computational savings.