- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 20 (2016), pp. 551-582.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
Extended hydrodynamic models for carrier transport are derived from the semiconductor Boltzmann equation with relaxation time approximation of the scattering term, by using the globally hyperbolic moment method and the moment-dependent relaxation time. Incorporating the microscopic relaxation time and the applied voltage bias, a formula is proposed to determine the relaxation time for each moment equation, which sets different relaxation rates for different moments such that higher moments damp faster. The resulting models would give more satisfactory results of macroscopic quantities of interest with a high-order convergence to those of the underlying Boltzmann equation as the involved moments increase, in comparison to the corresponding moment models using a single relaxation time. In order to simulate the steady states efficiently, a multigrid solver is developed for the derived moment models. Numerical simulations of an $n^+-n-n^+$ silicon diode are carried out to demonstrate the validation of the presented moment models, and the robustness and efficiency of the designed multigrid solver.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.290615.020316a}, url = {http://global-sci.org/intro/article_detail/cicp/11164.html} }Extended hydrodynamic models for carrier transport are derived from the semiconductor Boltzmann equation with relaxation time approximation of the scattering term, by using the globally hyperbolic moment method and the moment-dependent relaxation time. Incorporating the microscopic relaxation time and the applied voltage bias, a formula is proposed to determine the relaxation time for each moment equation, which sets different relaxation rates for different moments such that higher moments damp faster. The resulting models would give more satisfactory results of macroscopic quantities of interest with a high-order convergence to those of the underlying Boltzmann equation as the involved moments increase, in comparison to the corresponding moment models using a single relaxation time. In order to simulate the steady states efficiently, a multigrid solver is developed for the derived moment models. Numerical simulations of an $n^+-n-n^+$ silicon diode are carried out to demonstrate the validation of the presented moment models, and the robustness and efficiency of the designed multigrid solver.