- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 20 (2016), pp. 441-458.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
The differential capacitance of electric double-layer capacitors is studied by developing a generalized model of the self-consistent Gaussian field theory. This model includes many-body effects of particles near the interface such as ionic sizes, the order of water alignment and electrostatic correlations, and thus can present more accurate predictions of the electric double-layer structure and hence the capacitance than traditional continuum theories. Analytical simplification of the model and efficient numerical method are introduced, in particular, the approximation of the self-Green's function which describes the self energy of a mobile ion. We show that, when the applied voltage on interfaces is small the dielectric effect of the electrode materials plays an important role. For large voltage, this effect is screened, but the dielectric saturation due to the alignment of the nearby water is shown to be essential. For 2:1 electrolytes, abnormal enhancement on the capacitance due to the dielectric electrode is observed, which is due to the interplay of the image charge effect and Born solvation energy in the self energy of ions.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.260715.210316a}, url = {http://global-sci.org/intro/article_detail/cicp/11159.html} }The differential capacitance of electric double-layer capacitors is studied by developing a generalized model of the self-consistent Gaussian field theory. This model includes many-body effects of particles near the interface such as ionic sizes, the order of water alignment and electrostatic correlations, and thus can present more accurate predictions of the electric double-layer structure and hence the capacitance than traditional continuum theories. Analytical simplification of the model and efficient numerical method are introduced, in particular, the approximation of the self-Green's function which describes the self energy of a mobile ion. We show that, when the applied voltage on interfaces is small the dielectric effect of the electrode materials plays an important role. For large voltage, this effect is screened, but the dielectric saturation due to the alignment of the nearby water is shown to be essential. For 2:1 electrolytes, abnormal enhancement on the capacitance due to the dielectric electrode is observed, which is due to the interplay of the image charge effect and Born solvation energy in the self energy of ions.