- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 20 (2016), pp. 325-352.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
The present work constitutes a fraction of a more extensive study that is devoted to numerical methods in acoustics. More precisely, we address here the interpolation process, which is more and more frequently used in Computational Acoustics – whether it is for enabling multi-stage hybrid calculations, or for easing the proper handling of complex configurations via advanced techniques such as Chimera grids or Immersed Boundary Conditions. In that regard, we focus on high-order interpolation schemes, so as to analyze their intrinsic features and to assess their effective accuracy. Taking advantage of specific insights that had been previously achieved by the present authors regarding standard high-order interpolation schemes (of centered nature), we here focus on their so-called spectral-like optimized counterparts (of both centered and noncentered nature). The latter spectral-like optimized schemes are analyzed thoroughly thanks to dedicated theoretical developments, which allow highlighting better what their strengths and weaknesses are. Among others, the various ways such interpolation schemes can degrade acoustic signals they are applied to are carefully investigated from a theoretical point-of-view. Besides that, specific criteria that could help in optimizing interpolation schemes better are provided, along with generic rules about how to minimize the signal degradation induced by existing interpolation schemes, in practice.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.060515.161115b}, url = {http://global-sci.org/intro/article_detail/cicp/11155.html} }The present work constitutes a fraction of a more extensive study that is devoted to numerical methods in acoustics. More precisely, we address here the interpolation process, which is more and more frequently used in Computational Acoustics – whether it is for enabling multi-stage hybrid calculations, or for easing the proper handling of complex configurations via advanced techniques such as Chimera grids or Immersed Boundary Conditions. In that regard, we focus on high-order interpolation schemes, so as to analyze their intrinsic features and to assess their effective accuracy. Taking advantage of specific insights that had been previously achieved by the present authors regarding standard high-order interpolation schemes (of centered nature), we here focus on their so-called spectral-like optimized counterparts (of both centered and noncentered nature). The latter spectral-like optimized schemes are analyzed thoroughly thanks to dedicated theoretical developments, which allow highlighting better what their strengths and weaknesses are. Among others, the various ways such interpolation schemes can degrade acoustic signals they are applied to are carefully investigated from a theoretical point-of-view. Besides that, specific criteria that could help in optimizing interpolation schemes better are provided, along with generic rules about how to minimize the signal degradation induced by existing interpolation schemes, in practice.