- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 20 (2016), pp. 234-249.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
Here we investigate the kinematic transports of the defects in the nematic liquid crystal system by numerical experiments. The model is a shear flow case of the viscoelastic continuum model simplified from the Ericksen-Leslie system. The numerical experiments are carried out by using a difference method. Based on these numerical experiments we find some interesting and important relationships between the kinematic transports and the characteristics of the flow. We present the development and interaction of the defects. These results are partly consistent with the observation from the experiments. Thus this scheme illustrates, to some extent, the kinematic effects of the defects.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.120115.071215a}, url = {http://global-sci.org/intro/article_detail/cicp/11151.html} }Here we investigate the kinematic transports of the defects in the nematic liquid crystal system by numerical experiments. The model is a shear flow case of the viscoelastic continuum model simplified from the Ericksen-Leslie system. The numerical experiments are carried out by using a difference method. Based on these numerical experiments we find some interesting and important relationships between the kinematic transports and the characteristics of the flow. We present the development and interaction of the defects. These results are partly consistent with the observation from the experiments. Thus this scheme illustrates, to some extent, the kinematic effects of the defects.