- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 19 (2016), pp. 1191-1220.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
The first-order cross correlation and corresponding applications in the passive imaging are deeply studied by Garnier and Papanicolaou in their pioneer works. In this paper, the results of the first-order cross correlation are generalized to the second-order cross correlation. The second-order cross correlation is proven to be a statistically stable quantity, with respective to the random ambient noise sources. Specially, with proper time scales, the stochastic fluctuation for the second-order cross correlation converges much faster than the first-order one. Indeed, the convergent rate is of order $\mathcal{O}$($T^{−1+α}$), with 0<α<1. Besides, by using the stationary phase method in both homogeneous and scattering medium, similar behaviors of the singular components for the second-order cross correlation are obtained. Finally, two imaging methods are proposed to search for a target point reflector: One method is based on the imaging function, and has a better signal-to-noise rate; the other method is based on the geometric property, and can improve the bad range resolution of the imaging results.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.scpde14.26s}, url = {http://global-sci.org/intro/article_detail/cicp/11125.html} }The first-order cross correlation and corresponding applications in the passive imaging are deeply studied by Garnier and Papanicolaou in their pioneer works. In this paper, the results of the first-order cross correlation are generalized to the second-order cross correlation. The second-order cross correlation is proven to be a statistically stable quantity, with respective to the random ambient noise sources. Specially, with proper time scales, the stochastic fluctuation for the second-order cross correlation converges much faster than the first-order one. Indeed, the convergent rate is of order $\mathcal{O}$($T^{−1+α}$), with 0<α<1. Besides, by using the stationary phase method in both homogeneous and scattering medium, similar behaviors of the singular components for the second-order cross correlation are obtained. Finally, two imaging methods are proposed to search for a target point reflector: One method is based on the imaging function, and has a better signal-to-noise rate; the other method is based on the geometric property, and can improve the bad range resolution of the imaging results.