- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 19 (2016), pp. 1094-1110.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
We study the numerical performance of a continuous data assimilation (downscaling) algorithm, based on ideas from feedback control theory, in the context of the two-dimensional incompressible Navier-Stokes equations. Our model problem is to recover an unknown reference solution, asymptotically in time, by using continuous-in-time coarse-mesh nodal-point observational measurements of the velocity field of this reference solution (subsampling), as might be measured by an array of weather vane anemometers. Our calculations show that the required nodal observation density is remarkably less than what is suggested by the analytical study; and is in fact comparable to the number of numerically determining Fourier modes, which was reported in an earlier computational study by the authors. Thus, this method is computationally efficient and performs far better than the analytical estimates suggest.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.060515.161115a}, url = {http://global-sci.org/intro/article_detail/cicp/11121.html} }We study the numerical performance of a continuous data assimilation (downscaling) algorithm, based on ideas from feedback control theory, in the context of the two-dimensional incompressible Navier-Stokes equations. Our model problem is to recover an unknown reference solution, asymptotically in time, by using continuous-in-time coarse-mesh nodal-point observational measurements of the velocity field of this reference solution (subsampling), as might be measured by an array of weather vane anemometers. Our calculations show that the required nodal observation density is remarkably less than what is suggested by the analytical study; and is in fact comparable to the number of numerically determining Fourier modes, which was reported in an earlier computational study by the authors. Thus, this method is computationally efficient and performs far better than the analytical estimates suggest.