- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 19 (2016), pp. 927-943.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
In this paper, we study the selectivity of the potassium channel KcsA by a recently developed image-charge solvation method (ICSM) combined with molecular dynamics simulations. The hybrid solvation model in the ICSM is able to demonstrate atomistically the function of the selectivity filter of the KcsA channel when potassium and sodium ions are considered and their distributions inside the filter are simulated. Our study also shows that the reaction field effect, explicitly accounted for through image charge approximation in the ICSM model, is necessary in reproducing the correct selectivity property of the potassium channels.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.130315.310815a}, url = {http://global-sci.org/intro/article_detail/cicp/11114.html} }In this paper, we study the selectivity of the potassium channel KcsA by a recently developed image-charge solvation method (ICSM) combined with molecular dynamics simulations. The hybrid solvation model in the ICSM is able to demonstrate atomistically the function of the selectivity filter of the KcsA channel when potassium and sodium ions are considered and their distributions inside the filter are simulated. Our study also shows that the reaction field effect, explicitly accounted for through image charge approximation in the ICSM model, is necessary in reproducing the correct selectivity property of the potassium channels.