- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 19 (2016), pp. 881-903.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
This paper concerns the computation of nonlinear crest distributions for irregular Stokes waves, and a numerical algorithm based on the Fast Fourier Transform (FFT) technique has been developed for carrying out the nonlinear computations. In order to further improve the computational efficiency, a new Transformed Rayleigh procedure is first proposed as another alternative for computing the nonlinear wave crest height distributions, and the corresponding computer code has also been developed. In the proposed Transformed Rayleigh procedure, the transformation model is chosen to be a monotonic exponential function, calibrated such that the first three moments of the transformed model match the moments of the true process. The numerical algorithm based on the FFT technique and the proposed Transformed Rayleigh procedure have been applied to calculating the wave crest distributions of a sea state with a Bretschneider spectrum and a sea state with the surface elevation data measured at the Poseidon platform. It is demonstrated in these two cases that the numerical algorithm based on the FFT technique and the proposed Transformed Rayleigh procedure can offer better predictions than those from using the empirical wave crest distribution models. Meanwhile, it is found that our proposed Transformed Rayleigh procedure can compute nonlinear crest distributions more than 25 times faster than the numerical algorithm based on the FFT technique.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.191214.071215a}, url = {http://global-sci.org/intro/article_detail/cicp/11112.html} }This paper concerns the computation of nonlinear crest distributions for irregular Stokes waves, and a numerical algorithm based on the Fast Fourier Transform (FFT) technique has been developed for carrying out the nonlinear computations. In order to further improve the computational efficiency, a new Transformed Rayleigh procedure is first proposed as another alternative for computing the nonlinear wave crest height distributions, and the corresponding computer code has also been developed. In the proposed Transformed Rayleigh procedure, the transformation model is chosen to be a monotonic exponential function, calibrated such that the first three moments of the transformed model match the moments of the true process. The numerical algorithm based on the FFT technique and the proposed Transformed Rayleigh procedure have been applied to calculating the wave crest distributions of a sea state with a Bretschneider spectrum and a sea state with the surface elevation data measured at the Poseidon platform. It is demonstrated in these two cases that the numerical algorithm based on the FFT technique and the proposed Transformed Rayleigh procedure can offer better predictions than those from using the empirical wave crest distribution models. Meanwhile, it is found that our proposed Transformed Rayleigh procedure can compute nonlinear crest distributions more than 25 times faster than the numerical algorithm based on the FFT technique.