- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 19 (2016), pp. 648-662.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
A multigrid method is proposed to compute the ground state solution of Bose-Einstein condensations by the finite element method based on the multilevel correction for eigenvalue problems and the multigrid method for linear boundary value problems. In this scheme, obtaining the optimal approximation for the ground state solution of Bose-Einstein condensates includes a sequence of solutions of the linear boundary value problems by the multigrid method on the multilevel meshes and some solutions of nonlinear eigenvalue problems some very low dimensional finite element space. The total computational work of this scheme can reach almost the same optimal order as solving the corresponding linear boundary value problem. Therefore, this type of multigrid scheme can improve the overall efficiency for the simulation of Bose-Einstein condensations. Some numerical experiments are provided to validate the efficiency of the proposed method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.191114.130715a}, url = {http://global-sci.org/intro/article_detail/cicp/11104.html} }A multigrid method is proposed to compute the ground state solution of Bose-Einstein condensations by the finite element method based on the multilevel correction for eigenvalue problems and the multigrid method for linear boundary value problems. In this scheme, obtaining the optimal approximation for the ground state solution of Bose-Einstein condensates includes a sequence of solutions of the linear boundary value problems by the multigrid method on the multilevel meshes and some solutions of nonlinear eigenvalue problems some very low dimensional finite element space. The total computational work of this scheme can reach almost the same optimal order as solving the corresponding linear boundary value problem. Therefore, this type of multigrid scheme can improve the overall efficiency for the simulation of Bose-Einstein condensations. Some numerical experiments are provided to validate the efficiency of the proposed method.