- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 19 (2016), pp. 534-558.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
A uniaxial perfectly matched layer (PML) method is proposed for solving the scattering problem with multiple cavities. By virtue of the integral representation of the scattering field, we decompose the problem into a system of single-cavity scattering problems which are coupled with Dirichlet-to-Neumann maps. A PML is introduced to truncate the exterior domain of each cavity such that the computational domain does not intersect those for other cavities. Based on a posteriori error estimates, an adaptive finite element algorithm is proposed to solve the coupled system. The novelty of the proposed method is that its computational complexity is comparable to that for solving uncoupled single-cavity problems. Numerical experiments are presented to demonstrate the efficiency of the adaptive PML method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.040215.280815a}, url = {http://global-sci.org/intro/article_detail/cicp/11099.html} }A uniaxial perfectly matched layer (PML) method is proposed for solving the scattering problem with multiple cavities. By virtue of the integral representation of the scattering field, we decompose the problem into a system of single-cavity scattering problems which are coupled with Dirichlet-to-Neumann maps. A PML is introduced to truncate the exterior domain of each cavity such that the computational domain does not intersect those for other cavities. Based on a posteriori error estimates, an adaptive finite element algorithm is proposed to solve the coupled system. The novelty of the proposed method is that its computational complexity is comparable to that for solving uncoupled single-cavity problems. Numerical experiments are presented to demonstrate the efficiency of the adaptive PML method.