- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 19 (2016), pp. 411-441.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
In the paper, we develop and analyze a new mass-preserving splitting domain decomposition method over multiple sub-domains for solving parabolic equations. The domain is divided into non-overlapping multi-bock sub-domains. On the interfaces of sub-domains, the interface fluxes are computed by the semi-implicit (explicit) flux scheme. The solutions and fluxes in the interiors of sub-domains are computed by the splitting one-dimensional implicit solution-flux coupled scheme. The important feature is that the proposed scheme is mass conservative over multiple non-overlapping sub-domains. Analyzing the mass-preserving S-DDM scheme is difficult over non-overlapping multi-block sub-domains due to the combination of the splitting technique and the domain decomposition at each time step. We prove theoretically that our scheme satisfies conservation of mass over multi-block non-overlapping sub-domains and it is unconditionally stable. We further prove the convergence and obtain the error estimate in $L^2$-norm. Numerical experiments confirm theoretical results.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.070814.190615a}, url = {http://global-sci.org/intro/article_detail/cicp/11095.html} }In the paper, we develop and analyze a new mass-preserving splitting domain decomposition method over multiple sub-domains for solving parabolic equations. The domain is divided into non-overlapping multi-bock sub-domains. On the interfaces of sub-domains, the interface fluxes are computed by the semi-implicit (explicit) flux scheme. The solutions and fluxes in the interiors of sub-domains are computed by the splitting one-dimensional implicit solution-flux coupled scheme. The important feature is that the proposed scheme is mass conservative over multiple non-overlapping sub-domains. Analyzing the mass-preserving S-DDM scheme is difficult over non-overlapping multi-block sub-domains due to the combination of the splitting technique and the domain decomposition at each time step. We prove theoretically that our scheme satisfies conservation of mass over multi-block non-overlapping sub-domains and it is unconditionally stable. We further prove the convergence and obtain the error estimate in $L^2$-norm. Numerical experiments confirm theoretical results.