- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 19 (2016), pp. 329-353.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
In two-phase flow simulations, a difficult issue is usually the treatment of surface tension effects. These cause a pressure jump that is proportional to the curvature of the interface separating the two fluids. Since the evaluation of the curvature incorporates second derivatives, it is prone to numerical instabilities. Within this work, the interface is described by a level-set method based on a discontinuous Galerkin discretization. In order to stabilize the evaluation of the curvature, a patch-recovery operation is employed. There are numerous ways in which this filtering operation can be applied in the whole process of curvature computation. Therefore, an extensive numerical study is performed to identify optimal settings for the patch-recovery operations with respect to computational cost and accuracy.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.191114.140715a}, url = {http://global-sci.org/intro/article_detail/cicp/11091.html} }In two-phase flow simulations, a difficult issue is usually the treatment of surface tension effects. These cause a pressure jump that is proportional to the curvature of the interface separating the two fluids. Since the evaluation of the curvature incorporates second derivatives, it is prone to numerical instabilities. Within this work, the interface is described by a level-set method based on a discontinuous Galerkin discretization. In order to stabilize the evaluation of the curvature, a patch-recovery operation is employed. There are numerous ways in which this filtering operation can be applied in the whole process of curvature computation. Therefore, an extensive numerical study is performed to identify optimal settings for the patch-recovery operations with respect to computational cost and accuracy.